A1 Initial Research Questions - 1) Can Micromobility Safely Share Footpaths? - 2) Is hired micromobility safer/less safe than owned? - 3) How wide do footpaths need to be for micromobility to share them? - 4) Facility design elements contributing to or mitigating risk - 5) At what speed does micromobility cause DSI in a collision with pedestrians? - 6) Is the perception of safety concern from micromobility a deterrent to walking? - 7) Is there a perception of a safety risk? - 8) Is this a deterrent from walking? - 9) Is the perception of risk higher than risk - 10) Does micromobility cause a transportation inequity? - 11) Should micromobility users need to use helmets? - 12) Does a helmet protect against common injuries? - 13) What are the emissions of micromobility compared with other modes? - 14) Is micromobility replacing short car trips? Is it replacing walking or cycling trips? - 15) To what degree are micromobility trips being used to get to Public transport and what effect has micromobility had on public transport - 16) What is the impact of micromobility on levels of physical activity? - 17) Is micromobility more or less dangerous than cycling to pedestrians? - 18) How significant is skill level in crash results? - 19) Skill = number of trips before crash - 20) How percentage of accidents occurred with 2 riders? - 21) What is the percentage of crashes that have occurred under the influence of drugs or alcohol? - 22) At what speed environment can micromobility safely share with motorised vehicles? - 23) What types of vehicles can travel at these speeds? - 24) How much and what type of traffic do we have to get rid of for micromobility riders to be comfortable on the road? (speeds and volumes) - 25) How does the risk of different micromobility modes compare to each other and other activities? - 26) Overall mode share for auckland? - 27) DSI per distance travelled - 28) DSI per time travelled. - 29) Gender split - 30) Micromobility risk profiles, including exposure measures and user attributes. - 31) What is the role of near misses in forming perceptions of e-scooter safety among e-scooter riders and non-riders? - 32) Impact of pricing mechanisms on safety for shared micromobility - 33) Impact of facility condition and maintenance on risk - 34) Surfaces on Queen Street are apparently causing so much juddering it keeps speed down - 35) Smooth surfaces (eg Fort St) may be dangerous to e-scooters - 36) Non-user safety, including consideration of the severity of crashes/incidents - 37) Pedestrian vs micromobility and cyclist vs micromobility interactions - 38) How current guidance and operations are/aren't complementary to safely accommodating micromobility - 39) Barriers to micromobility achieving more positive outcomes and addressing the challenges faced by Auckland's Transport system: - 40) is Helmet use a barrier? - 41) Availability? - 42) Cost? Infrastructure availability? ## **A2** Gap Analysis | Research Idea | Why important | Data Required | Available | Can Data Be
Obtained in
Time?
Y/N/M | | Pursue
as
concept
Y/N | Prioritisation | AT
Comment | |--|---|---|-------------------|--|--|--------------------------------|----------------|---------------| | Can Micromobility Safely Share Footpaths? | other decision | · • | 1.N
2.N
3.N | Y | Ped Modelling Width of shared paths Speed guns X-KEMM-X modelling Speed data from operators processing Data requests | Y | High | | | Is hired micromobility safer/less safe than owned? | continue hire use micromobility schemes and to determine what | periods where
there where no
operator present | 5.N | | Speed guns X-KEMM-X modelling Speed data from operators processing Survey Data requests | N | Low | | | Research Idea | Why important | Data Required | | Can Data Be
Obtained in
Time?
Y/N/M | Collection
Methodology | Pursue
as
concept
Y/N | Prioritisation | AT
Comment | |---|---|---|------------|--|---|--------------------------------|---------------------------------------|---------------| | How wide do footpaths need to be for micromobility to share them? 1. Facility design elements contributing to or mitigating risk | To assist regulators in determining where to allow different forms of micro mobility devices. | 1.X-KEMM-X 2.Speed data from operators 3. speed of modes on shared paths 4.grass areas present (for peds to move on if needed) 5. The lowest width of a street. 6. Pedestrian volumes | 6.N | Υ | Speed guns
X-KEMM-X
modelling
Speed data
from
operators
processing
Data requests | | High | Good one | | At what speed does micromobility cause DSI in a collision with pedestrians? | To assist regulators in determining safe and appropriate speeds for different forms of micro mobility | 1.X-KEMM-X | N | Y | X-KEMM-X
modelling for
different VRU
Data requests | | High | | | Is the perception of safety concern from micromobility a deterrent to walking? 1. Is there a perception of a safety risk? 2. Is this a deterrent from walking? | To deepen understand on the wider impacts that micro mobility has on peoples lives. so that regulators and other decision makers can make | disability
organisation | 1.N
2.N | Y | 1.Survey
2.Talk to
disability
organisation
Data requests | Y | High – lit
review parly
answers | Yes | | Research Idea | Why important | Data Required | Data
Currently
Available
Y/N | Can Data Be
Obtained in
Time?
Y/N/M | | Pursue
as
concept
Y/N | Prioritisation | AT
Comment | |--|--|--------------------------------|---------------------------------------|--|--|--------------------------------|--|---------------| | 3. Is the perception of risk higher than risk4. Does micromobility cause a transportation inequity? | informed choices regarding e-scooters. | | | | | | | | | Should micromobility users need to use helmets? 1. Does a helmet protect against common injuries? | regulators in | 1.X-KEMM-X
2.ACC data
3. | 1.N
2.Partially
3.Y | Y | Lit review and
data requests | | Will likely be
answered by
the ACC data
and the lit
review | | | What are the emissions of micromobility compared with other modes? | To deepen understand on the wider impacts that micro mobility has. | 1.Lifecycle
assessments | 1.N | N | Data requests | N | No go (Very
difficult to
analyse,
changing
rapidly
) | | | Is micromobility replacing short car trips? Is it replacing walking or cycling trips? 1. To what degree are micromobility trips being used to get to Public transport and | understand on the
wider impacts that
micro mobility has | 2.Survey | 1.N
2.N
3.Y | Y | Compare
median or
average trip
length to
other modes | M- partly | Lit review will indicate towards an answer to this | Yes | | Research Idea | Why important | | Data
Currently
Available
Y/N | Can Data Be
Obtained in
Time?
Y/N/M | | Pursue
as
concept
Y/N | Prioritisation | AT
Comment | |---|--|---|---------------------------------------|--|--|--------------------------------|----------------|--| | what effect has micro mobility had on public
transport 2. What is the impact of micromobility on
levels of physical activity? | So that decision makers can make informed choices regarding escooters. | (ask them to
record this going
forward) | | | Look into the trip types for other modes Look at the bus stations and see how many trips end at these location Survey required until enough data from household travel survey is available | | | | | Is micromobility more or less dangerous than cycling to pedestrians? | · | | 1.N
2.Partially | | X-KEMM-X
modelling for
different VRU | Y | | | | How significant is skill level in crash results? 1. Skill = number of trips before crash 2. How percentage of accidents occurred with 2 riders? | other safety | 2.Rental vs
Owned | 1.N
2.N
3.N | | On-street
counting
On site
survey | Y | | Yes –
useful for
deciding
on training | | Research Idea | Why important | Data Required | • | Can Data Be
Obtained in
Time?
Y/N/M | | Pursue
as
concept
Y/N | Prioritisation | AT
Comment | |---|---|---------------|---------------------------|--|--|--------------------------------|----------------|---| | 3. What is the percentage of crashes that have occurred under the influence of drugs or alcohol? | | | | | | | | | | At what speed environment can micromobility safely share with motorised vehicles? 1. What types of vehicles can travel at these speeds? 2. How much and what type of traffic do we have to get rid of for micromobility riders to be comfortable on the road? | To help decision makers make informed choices on prioritisation of modes, speed and | | 1.N
2.Y
3.Y
4.Y | | X-KEMM-X
modelling for
different VRU | Y | High | | | (speeds and volumes) How does the risk of different micromobility modes compare to each other and other activities? 1. Overall mode share for auckland? 2. DSI per distance travelled 3. DSI per time travelled. 4. DSI per trips. 5. Gender split | makers make informed choices on prioritisation of modes, speed and safety choices regarding different micromobility | | 1.Partially
2.N
3.Y | Y | Data requests | Y | High | 5 a (risk
profiles) is
from
scope. | | Research Idea | Why important | · | Data
Currently
Available
Y/N | Can Data Be
Obtained in
Time?
Y/N/M | | Pursue
as
concept
Y/N | Prioritisation | AT
Comment | |--|--|---|---------------------------------------|--|-----------------------|--------------------------------|--------------------------|---------------| | a. Micro-mobility risk profiles, including exposure measures and user attributes | | | | | | | | | | What is the role of near misses in forming perceptions of escooter safety among escooter riders and non-riders? | · ' | 1.*555 data
2.Survey | N | Y | | | Low | | | Impact of pricing mechanisms on safety for shared micro-mobility | To help decision makers make informed choices regarding the influence they | 1.Find out about the different operator pricing mechanisms 2.Survey 3.Operator reported crashes | 2.
3. | | | | High - Very
difficult | From
scope | | Impact of facility condition and maintenance on risk • Surfaces on Queen Street are apparently causing so much juddering it keeps speed down • Smooth surfaces (eg Fort St) may be dangerous to e-scooters | makers make | 1.CRM data
2. Speed camera
data | 1.
2.
3. | | Speed gun | | High | From
scope | | Non-user safety, including consideration of the severity of crashes/incidents Pedestrian vs micromobility and cyclist vs | | 1.X-KEMM-X | | | X-KEMM-X
modelling | | High | From
scope | | Research Idea | Why important | Data Required | Data
Currently
Available
Y/N | Can Data Be
Obtained in
Time?
Y/N/M | Pursue
as
concept
Y/N | | AT
Comment | |--|---------------|--|---------------------------------------|--|--------------------------------|------|---------------| | micro-mobility interactions | | | | | | | | | How current guidance and
operations are/aren't
complementary to safely
accommodating micro-mobility | | Review findings against the code of practice and the new legislation | | | | High | From
scope | | Barriers to micro-mobility achieving more positive outcomes and addressing the challenges faced by Auckland's Transport system is Helmet use a barrier Availability Cost Infrastructure availability | | 1.Slow speeds
zones
2.Survey | | | | 0 | From
scope |